InLinx for Document Classification, Sharing and Recommendation
نویسندگان
چکیده
This paper proposes an hybrid recommender system, InLinx, that combine content analysis and the development of virtual clusters of students and of didactical sources providing facilities to use the huge amount of digital information according to the student’s personal requirements and interests. The paper proposes novel methods for information management, with special focus on the development of new algorithms and intelligent applications for personalized information sharing, filtering and retrieval. InLinx helps the student to classify domain specific information found in the Web and saved as bookmarks, to recommend these documents to other students with similar interests and to periodically notify new potential interesting documents.
منابع مشابه
Document recommendation for knowledge sharing in personal folder environments
Sharing sustainable and valuable knowledge among knowledge workers is a fundamental aspect of knowledge management. In organizations, knowledge workers usually have personal folders in which they organize and store needed codified knowledge (textual documents) in categories. In such personal folder environments, providing knowledge workers with needed knowledge from other workers’ folders is im...
متن کاملA New Document Embedding Method for News Classification
Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملنقش ارتباطات معنایی در بهبود نتایج یک سیستم پیشنهاد استناد- مقاله برگزیده هفدهمین کنفرانس ملی انجمن کامپیوتر ایران
With the increasingly growth of scientific documents in the Web, it is difficult to select a concerned document. A citation recommendation system receives a text and recommends documents to be cited by the text. Such recommendation helps a researcher in hitting his/her concerned texts. Based on sematic relations, this paper presents a new indicator to measure the similarity between documents an...
متن کامل